Use of biomarkers as prognostic indicators in dogs with natural heartworm

1Mario de la Puente, 2Rodrigo De Lavalle Galvis, 3Jorge G. Rodríguez, 4Ariel M. Duarte, 5Amanda R. Riquett, 6María de la Puente, 7Maria B. Viloria
1Research Group I.A, Universidad del Norte, Colombia, 2Faculty of Veterinary Medicine, University of Cordoba, Colombia, 3Faculty of Veterinary Medicine, University of Cordoba, Colombia, 4Faculty of Veterinary Medicine, University of Cordoba, Colombia, 5Department of Veterinary Medicine, UDCA University, Colombia. 6Department of Veterinary Medicine, UDCA University, Colombia. 7Faculty of Biomedical Sciences, Simón Bolivar University, Colombia.

Abstract. Heartworm disease is a parasitic illness caused by the *Dirofilaria immitis* nematode. In its developed form, remains in the pulmonary artery and right side of the heart, resulting in pulmonary thromboembolism, myocarditis, and inflammation. A retrospective study was made in which was evaluated the usefulness of the Dimer-D, troponin I and C-reactive protein in sick dogs naturally infected with heartworm. There were evaluated the concentrations of D-Dimer, troponin I and C-reactive protein in 23 dogs, analyzed hematological variables, the presence or absence of microfilariae, the pulmonary hypertension and clinical signs. The respiratory problems were the most frequent clinical signs including dyspnea (74%), cough (30%), pulmonary hypertension (57%), and other signs of inflammation or pulmonary thromboembolism. Hematological changes were not found. Elevations of the Dimer-D were found in 73.9% of cases, where the patients with microfilariae (69.6%) showed higher values compared to amicrofilaraemics (30.4%); males had a higher average (3,857.83 ng ml-1) compared to females (1,714.0 ng ml-1). Troponin I and C-reactive protein had elevations in 21.7 - 39.1% of cases without significant changes compared to sex or microfilariae. The measurement of Dimer-D, troponin I and C-reactive protein complements for the diagnosis, prognosis and therapeutic control in patients with *D. immitis* indicated inflammation, pulmonary thromboembolism and/or myocarditis.

Key Words: pulmonary hypertension, acute phase proteins, troponins.

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Corresponding Author: M. de la Puente, email: mdelapuente@uninorte.edu.co

Introduction

Pulmonary thromboembolism (PT) is the formation of clots in the pulmonary arterial circulation (Lynelle et al 1999). Dirofilariosis is also known as heartworm disease and is caused by a parasite of the genus *Dirofilaria immitis*, which in adult phase is located in the pulmonary artery or in its branches (McCall et al 2008). The adult parasite is in contact with the vascular endothelium triggering a proliferative endoarteritis, ending with the production of thrombi; the death of the parasites or fragments of them travel to the smaller branches of the lungs triggering PT, these effects leading to the development of pulmonary hypertension (PH) (Simón et al 2012). The presence of PT and PH causes damage to the myocardium due to volume and pressure overload (Goggs et al 2017). The use of biomarkers has grown in veterinary medicine, particularly in patients with *D. immitis* (Carretón et al 2011). Troponin I (nTcI), for example is one of the myofibrillar proteins that regulates the interaction of calcium with myosin and actin. Its blood elevation correlates with myocardial injury or myocyte necrosis. It has high specificity and sensitivity as a cardiac biomarker (Darcy et al 2005) (Becattini et al 2007). D-dimer is generated during thrombus formation when the factor XIIa cross-links the terminal D domains of fibrin (Tracy, 2002). The increase in its concentrations is present in dogs with PT (Epstein et al 2013), but it should be noted that this increase is not useful in order to verify the formation of clots, due to their low specificity (Nelson et al., 2003) (Janata et al 2003). The C-reactive protein (CRP) is an acute phase protein that helps restore homeostasis and limit bacterial growth independently of antibodies in response to inflammation, infection or trauma (Murata et al 2004) (Kumar et al 2015). These proteins are used for diagnosis, prognosis and therapeutic monitoring; it is highly sensitive, indicating inflammatory processes, but is not very specific (Eckersall et al 2010). It is the most used acute phase protein in dogs and is reported that it alters in the presence of *D. immitis* (Méndez et al 2014). The general objective of the present report was to evaluate the use of cardiopulmonary and inflammatory biomarkers (cTnI, D-dimer and CRP) in dogs infected with *D. immitis* as prognosis in the presentation of PT, myocarditis and inflammation, and to perform an adequate therapeutic plan.

Materials and methods

The medical records of the Mastervet Veterinary Clinic in the city of Barranquilla (Colombia) were used to perform a retrospective study on patients with heartworm disease from January 2016 to January 2017. During this period, 54 individuals were positive. However, only 23 clinical reports were analyzed, since they included cardiopulmonary and inflammatory biomarkers as...
a complement for the diagnosis of PT, myocardiitis and inflammation. The parameters that were evaluated included: clinical history, laboratory tests, existence of microfilariae, presence of pulmonary hypertension and survival.

The diagnosis was made through ELISA commercial test that detects circulating antigens (antigen rapid heartworm Ag test kit 2.0, Bionote Laboratories, Republic of Korea) according to the manufacturer’s specifications. The presence or absence of microfilariae was evaluated in positive dogs using Knott’s modified test. For the diagnosis of PH, the patients underwent echocardiogram with spectral and color Doppler (Mindray Z6Vet) placing them in right lateral recumbency with the transducer placed in the third intercostal space; the reports were carried out by the same person. The age range of the studied individuals was from 2 to 10 years old (mean of 5.26), including 5 females and 18 males.

Blood samples were taken from the jugular or cephalic vein in each patient. For the measurement of cTnI and D-dimer were used red and blue cap tubes, respectively for later analysis in a certified human laboratory in the city. The samples for D-dimer were centrifuged immediately until the plasma was obtained. On the other hand, the blood count was evaluated in an automatic analyzer (Mindray BC-2800Vet) in a purple cap tube. The measurement ranges for cTnI were <0.02 ng ml\(^{-1}\) (Oyama et al 2004), for D-dimer <250 ng ml\(^{-1}\) (Epstein et al 2013) and for the CRP <12 mg L\(^{-1}\) (Méndez et al 2014). The values below these were taken as negative and the values above as positive.

Statistical analysis

The data collected were tabulated through office Excel 2007, using InfoStat (version 2008 for Windows) for later analysis. It was used descriptive statistics (Mean, proportion and range), and the test of difference between two proportions. The confidence intervals for the different hematological variables, D-dimer tests, CRP and cTnI were estimated between the patients.

Results

Table 1 shows the percentages and confidence intervals (95%) of the clinical signs that had the patients studied. Highlighting the proportion of depressed individuals with a range from 66 to 97%,

<table>
<thead>
<tr>
<th>Clinical signs</th>
<th>Percentage</th>
<th>CI (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>35</td>
<td>(16.0-57.0)</td>
</tr>
<tr>
<td>Decay</td>
<td>87</td>
<td>(66.0-97.0)</td>
</tr>
<tr>
<td>Dehydration</td>
<td>43</td>
<td>(23.0-66.0)</td>
</tr>
<tr>
<td>Cough</td>
<td>30</td>
<td>(13.0-53.0)</td>
</tr>
<tr>
<td>Icterus</td>
<td>17</td>
<td>(0.5-39.0)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>74</td>
<td>(52.0-90.0)</td>
</tr>
<tr>
<td>Pulmonary hypertension</td>
<td>57</td>
<td>(34.0-77.0)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>26</td>
<td>(10.0-48.0)</td>
</tr>
<tr>
<td>Syncope</td>
<td>17</td>
<td>(0.5-39.0)</td>
</tr>
<tr>
<td>Microfilariae</td>
<td>70</td>
<td>(47.0-87.0)</td>
</tr>
<tr>
<td>Death</td>
<td>0.9</td>
<td>(0.1-28.0)</td>
</tr>
</tbody>
</table>

Discussion

Few studies have documented the usefulness of Dimer-D, cTnI and CRP for their use in daily clinic. These cardiopulmonary and inflammatory biomarkers are recently used in veterinary medicine for the diagnosis of cardiovascular diseases (Boswood et al 2009), and studied in patients with *D. immitis* (Carretón et al 2011) experimental mode with myocardial damage and adulticide treatments of patients infected with *D. immitis* (Carretón et al 2013b). The measures for the Dimer-D, CRP and cTnI as biomarkers in the diagnosis, prognosis and treatment of lesions caused by the parasite, indicated myocardial damage, TE and inflammation.

The heartworm provoke in the host lesions in the artery and pulmonary parenchyma, triggering PH and PT due to thrombus formation or fragments due to the death of the adult parasites (Bowman et al 2009). Patients who had heartworm developed in the initial stages respiratory signs and in the final phase congestive signs, vena cava syndrome or sudden death. Within the respiratory clinical signs it is described coughing as one of the first signs (McCall et al 2008); 13 to 53% of the patients had coughing, but there was dyspnea in a greater proportion of individuals with a range from 52 to 90%. Thromboembolism has a poor prognosis and is potentially fatal. The most frequent signs are tachypnea, dyspnea, and depression. Other signs may be hemoptysis, cyanosis, syncope, collapse and sudden death (Gogs et al 2017). The common signs that patients had were suggestive of PT in different degrees, but these signs are non-specific and inconsistent.
leukocytes was observed from 10.02 to 20.42 x10^9 L^{-1} despite the D-dimer plasma increases. In addition, a range of in the reference values in the range from 212 to 304 x10^9 L^{-1} bocytopenia in 40% of cases). In our study, it remained within normal limits (38.29 - 47.77%). Females showed a red blood cell count that was lower compared to the males. The complete blood count does not discriminate the occurrence of PT (Goggs et al 2017). In hematological alterations during the formation of thrombi, the thrombocytopenia, anemia and leukocytosis are reported and leukenopenia is the least frequent (Respess et al 2012). In our study the hematocrit remained within normal limits (38.29 - 47.77%). Females showed a red blood cell count that was lower compared to the males.

Platelet count can be normal or high despite the formation of clots that could cause platelet consumption in patients infected with *D. immitis* as reported by Lynelle et al in 1999 (thrombocytopenia in 40% of cases). In our study, it remained within the reference values in the range from 212 to 304 x10^9 L^{-1} despite the D-dimer plasma increases. In addition, a range of leukocytes was observed from 10.02 to 20.42 x10^9 L^{-1} with a tendency to leukocytosis where males showed higher increase compared to females. The increase is suggestive for pulmonary inflammation generated by parasites at this level or by PT. The leukocyte increase as a risk factor has been reported in canine patients (Thawley et al 2016) and human patients (Buxhofer-Ausch et al 2012). 30% of the patients did not present microfilaremia, suggestive of the age of the parasites or the immune response to microfilariae or adult parasites (McCall et al 2008). Arterial endothelial alteration and reduction of the pulmonary arterial diameter due to thrombus or to the presence of adult parasites, together with inflammatory mediators, can lead to the presentation of PH (Simón et al 2012). This pathology was reported from 68% (Serrano et al 2017a) to 70.4% (62-88%) (Serrano et al 2017b). A similar finding was observed in 57% (34-77%) of the studied population which was considered a frequent and severe phenomenon of the disease; it was present at the time of the diagnosis and it persisted 120 days after the application of adulticide therapy (Serrano et al 2017a).

The classic triad of signs of PT in humans include dyspnea, pain in the chest and hemoptysis; dyspnea occurs around from 59 to 90% (Lynelle et al 1999) and 90% (Klein et al 1989) of the cases. Data that is similar to the reported information were found in our study in ranges from 52 to 90%. Dimer-D is a fibrin degradation product; high plasma concentrations indicate the presence of thrombi or their degradation. This test is more sensitive and specific as opposed to thromboelastography. Studies have found no significant differences between, but several experimental approaches did find a correlation between the presence of thrombi and an increase of Dimer-D (Thawley et al 2016; Lennon et al 2013). In addition, it was reported that dogs naturally and experimentally infected with *D. immitis* have deposits of Dimer-D in 34.8% to 40% of pulmonary tissue (Carretón et al 2013a), and 47% in heartworm-infected patients (Carretón et al 2011). In our investigation there were deposits of Dimer-D in 73.9% of pulmonary tissue.

Thrombosis is more common in females than in males (Thawley et al 2016; Stokol et al 2003). The relation of coagulation to sex has been identified using thromboelastography in humans in healthy individuals (Gorton et al 2000) and trauma patients (Schreiber et al 2005), possibly caused by the increase in fibrinogen, factor III and low concentrations of S protein that would explain the tendency to thrombosis in people (Lowe et al 1997). The hormonal role was not fully elucidated, but females would explain the tendency to thrombosis in people (Lowe et al 1997). The hormonal role was not fully elucidated, but females were more likely even if they are sterile (Thawley et al 2016). Epidemiological studies of the coagulation factors have not been reported in dogs or if females or males produce more thrombi, but in this study it was found that males (3,857.83 ng ml^{-1}) had an average higher with respect to females (1,714.0 ng ml^{-1}). The cTnI is a sensitive and specific biomarker of myocardial injury which has been used as a diagnosis in various cardiac pathologies in dogs (Oyama et al 2004). Slight increases in cTnI were found in dogs with circulating microfilaremia and amicrofilaremic antigens in infected individuals (Carretón et al 2011). 21.7% of evaluated patients showed increases of the cTnI. Males had higher values compared to females. It was that the increase of cTnI is caused by the PH and consequently due to the right heart failure (Carretón et al 2012), but the analysis of the data did not showed any relation between the increase of cTnI and

<table>
<thead>
<tr>
<th>Variable</th>
<th>Result</th>
<th>Males n=5</th>
<th>Females N=18</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-dimer ng ml^{-1}</td>
<td>3.391.78</td>
<td>3.857.83</td>
<td>1.714.0</td>
</tr>
<tr>
<td>Troponin I ng ml^{-1}</td>
<td>0.1</td>
<td>0.13</td>
<td>0.01</td>
</tr>
<tr>
<td>C-reactive protein mg L^{-1}</td>
<td>44.8</td>
<td>47.4</td>
<td>36</td>
</tr>
</tbody>
</table>

Table 2. Hematological average values studied in patients with heartworm disease

<table>
<thead>
<tr>
<th>Hematological values</th>
<th>Average (CI)</th>
<th>Females n= 5 (CI)</th>
<th>Males n=18 (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematocrit %</td>
<td>43.03 (38.29-47.77)</td>
<td>39.24 (21.0-50.0)</td>
<td>44.08 (17.09-65.40)</td>
</tr>
<tr>
<td>RBC x10^{12} L^{-1}</td>
<td>6.07 (5.43-6.72)</td>
<td>5.62 (3.10-7.10)</td>
<td>6.20 (2.50-8.70)</td>
</tr>
<tr>
<td>Hemoglobin g dL^{-1}</td>
<td>13.67 (2.19-15.14)</td>
<td>12.72 (7.0-16.60)</td>
<td>13.93 (5.60-18.70)</td>
</tr>
<tr>
<td>WBC x10^{9} L^{-1}</td>
<td>15.22 (10.02-20.42)</td>
<td>17.22 (8.70-44.6)</td>
<td>14.67 (6.10-58.90)</td>
</tr>
<tr>
<td>Neutrophils x10^{9} L^{-1}</td>
<td>11.46 (6.41-16.52)</td>
<td>12.80 (5.10-39.90)</td>
<td>11.09 (0.59-53)</td>
</tr>
<tr>
<td>Lymphocytes x10^{9} L^{-1}</td>
<td>2.45 (1.85-3.04)</td>
<td>2.38 (0.69-3.90)</td>
<td>2.47 (0.62-5.20)</td>
</tr>
<tr>
<td>Monocytes x10^{9} L^{-1}</td>
<td>0.76 (0.54-0.97)</td>
<td>1.28 (0.80-2.10)</td>
<td>0.61 (0.18-1.40)</td>
</tr>
<tr>
<td>Platelets x10^{9} L^{-1}</td>
<td>258.32 (212.05-304.58)</td>
<td>286.36 (188-393)</td>
<td>250.53 (114-466)</td>
</tr>
</tbody>
</table>

Table 3. Mean values of cardiopulmonary and inflammatory biomarkers of dogs infected with the heartworm

CI: confidence interval, RBC: Red blood cells, WBC: White blood cells
the presence of PH. Similar results were reported by Carretón et al (2012) where they correlated microscopic findings and myocardial with staining anti-cTnI antibodies. Meanwhile, the levels of Dimer-D and CRP did increase in PH, which suggests that the presence of thrombi and inflammation can develop this pathology (Ben et al 2007).

Conclusions
This retrospective study reaffirmed the effectiveness of the use of biomarkers in predicting the evolution of dogs with *D-Immitis* disease through the mean hematological values showed in Table 2 and the average cardiopulmonary and inflammatory values in Table 3. However, unlike other similar experiments, our study reported a greater coverage of Dimer-D in lung tissues of 73.9% On the other hand, despite epidemiological studies of the co-agulation factors have not been reported in dogs or if females or males produce more thrombi, this study found that males had an average higher compared to females. Both results opens the door for future trials and analysis under similar conditions. The analysis of the data did not showed correlation between cTnI and the presence of PH.

References

Kumar SA, Vardhan SH, Arun RA, Kumar SS. C-reactive protein, inflammation and coronary heart disease. EHU 2015;67:89-97.

Tracy RP. Inflammation in Cardiovascular Disease: Cart, Horse or Both—Revisited. Journal of the American Heath Association. 2002;22:1514-1515. DOI:10.1161/01.ATV.0000035403.39442.DB

Authors
• Mario de la Puente, Research Group I.A, Universidad del Norte, Colombia, Km 5 Via Puerto Colombia, Colombia, Email: mdelapuente@uninorte.edu.co.
• Rodrigo De Lavalle Galvis, Faculty of Veterinary Medicine, University of Cordoba, Colombia, Avenue 6 No. 76-103, Montería, Córdoba. Email: rdelavallegalvis42@correo.unicordoba.edu.co.
• Jorge Guzmán Rodríguez, Faculty of Veterinary Medicine, University of Cordoba, Colombia, Avenue 6 No. 76-103, Montería, Córdoba. Email: Email: Jorgeguzmannon@gmail.com
• Ariel Mendoza Duarte, Faculty of Veterinary Medicine, University of Cordoba, Colombia, Avenue 6 No. 76-103, Montería, Córdoba. Email: vetsharpey@gmail.com
• Amanda Ramos Riquett, Department of Veterinary Medicine, UDCA University, Colombia, Street 31 No. 18b - 17 (Avenida Pié del Cerro)Cartagena, Colombia, Email: amandaka_mvz@hotmail.com
• María de la Puente, Department of Veterinary Medicine, UDCA University, Colombia, Colombia, Street 31 No. 18b - 17 (Avenida Pié del Cerro), Email: crisdlp93@hotmail.com
• María Badillo Viloria, Faculty of Biomedical Sciences, Simón Bolivar University, Colombia, Street 58 #55-132, Barranquilla, Colombia, Email: Mbadillo3@unisimonbolivar.edu.co
• María Badillo Viloria, Faculty of Biomedical Sciences, Simón Bolivar University, Colombia, Street 58 #55-132, Barranquilla, Colombia, Email: Mbadillo3@unisimonbolivar.edu.co

Citation de la Puente M, De Lavalle Galvis R, Rodríguez RG, Duarte AM, Riquett AR, de la Puente M, Viloria MB. Use of biomarkers as prognostic indicators in dogs with natural heartworm. HVM Bioflux 2018;10(3):99-103.

Editor Stefan C. Vesa

Received 18 May 2018
Accepted 26 June 2018
Published Online 19 July 2018
Funding None reported
Conflicts/Competing Interests None reported