Occurrence of enterotoxins, exfoliative toxins and toxic shock syndrome toxin-1 genes in Staphylococcus aureus and CoNS isolated from clinical and food samples in Algeria

Rachid Achek, Zafer Cantekin, Mustapha Oumouna, Amira Mahdi, Taha-Mossadak Hamdi

Abstract. The aim of this study was to determine the occurrence of toxin-genes carried by strains of Staphylococcus aureus and Coagulase Negative Staphylococci (CoNS) in Algeria. The present study performed two set multiplex PCR assay using specific primers for screening of 8 genes encoding for classical enterotoxins (SEs) (sea to see), Exfoliative Toxins (eta, etb) and Toxic Shock Syndrome Toxin-1 (tst). We analyzed 51 strains isolated from food samples and 45 strains originated from clinical cases. We observed that more than half of food strains (52.94%) possessed at least one of SEs genes; where S. aureus appears to be potentially enterotoxigenic than CoNS (68.18% vs 41.37%). From all the SEs genes amplified (27), sed gene (19; 70.37%) was the most frequently detected. In clinical isolates, only 6 (13%) S. aureus harboured at least one SEs genes. However, 55.55% of clinical isolates (S. aureus or CoNS) possessed tst gene for Toxic Shock Syndrome Toxin-1. There were no foods or clinical isolates detected to possess exfoliative toxins genes (eta, etb). In conclusion, this study showed high frequency of SEs genes in food isolates, and tst gene in clinical isolates; our findings provide updated data on the Staphylococci toxins carriage in Algeria.

Key Words: Staphylococcus aureus; Enterotoxins; PCR; CoNS; TSST-1.

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Corresponding Author: R. Achek, email: achekrachid@gmail.com

Introduction

Staphylococci are responsible for nosocomial/community acquired infections and foodborne illnesses worldwide (Le Loir et al 2003). This bacterium remains a persistent opportunistic of the respiratory tract and skin, either for human or animals (Monecke et al 2011) and constitutes a contamination source in food or health-care facilities (Kluytmans et al 1997; Von Eiff et al 2001).

Staphylococci produce a variety of toxins responsible for foodborne illness or toxic affections in patients with serious health problems (Hennekinne et al 2010). Consumption of contaminated meals with enterotoxins causes vomiting, diarrhoea and enteritis within six hours (Le Loir et al 2003; Seo and Bohach 2007). In addition, Staphylococci cause severe systemic affections (pneumonia, endocarditis), associated with variety of exotoxins such as toxic shock syndrome toxin-1 (TSST-1), exfoliative toxins A and B, and Panton-Valentine leucocidin (PVL) (Balaban and Rasooly 2000; Dinges et al 2000).

Moreover, Staphylococci have a wide ability to acquire toxin-encoding genes. Most of these genes are located and transmitted via mobile genetic elements. For example, plasmids for seb (SEB), sed (SED) and etb (exfoliative toxin B) genes (Bayles and Landolo 1989; Argudin et al 2010); prophages for sea (SEA) and see (SEE) genes (Balaban and Rasooly 2000; Le Loir et al 2003); Staphylococcal pathogenicity islands for sec (SEC) and tst (TSST-1) gene (Dinges et al 2000; Argudin et al 2010). These aspects of mobile carriage accentuate horizontal transmission among isolates as well as modify their virulent ability and their evolution state (Becker et al 2003; Argudin et al 2010; Grumann et al 2014).

Coagulase positive Staphylococci (CoPS), especially Staphylococcus aureus were considered as the most pathogenic species (Hennekinne et al 2010), while, Coagulase Negative Staphylococci (CoNS) had gained little attention and thought to be non-pathogenic (Kloos and Schleifer 1975). However, recently, CoNS ability to carry multiple pathogenic factors such as enterotoxins and TSST-1 toxin have been demonstrated (da Cunha et al 2007; Zell et al 2008; Vasconcelos et al 2011; Batista et al 2013). Toxin-associated genes carried by CoNS can be transmitted by cohabitation with other pathogenic Staphylococci (Lawrynowicz-Paciorek et al 2007; Vasconcelos and da Cunha 2010). Nevertheless, CoNS can contaminate foods and their clinical importance and toxigenic capacity cannot be ignored (Kloos and Bannerman 1995; Otto 2009).

Algerian studies were focused on Staphylococci antibiotic resistance (Ramdani-Bouguesa et al 2006; Rebiahi et al 2011...
Ouchenane et al 2011) and rarely on virulence factors such as: TSST-1 and PVL toxins (Ramdani-Bouguessa et al 2006). The aim of the present study was to determine by PCR the frequency of genes encoding staphylococcal enterotoxins, exfoliative toxins, and toxic shock syndrome toxin-1 genes, in Staphylococci strains isolated from food and clinical samples in Algeria.

Materials and methods

Bacterial Strains
A total of 96 Staphylococcus spp. isolates were used. Fifty one (53.13%) isolates were obtained from food matrix, samples including raw milk, minced beef meat, sausages and creamy cake were collected from retail market (supermarkets, conventional markets, or bazaars) in large cities at two regions of Médéa and Ain defla provinces, Algeria. Forty five (46.88%) strains were isolated from clinical samples, clinical samples included: pus, sperm, urine, vaginal discharge, wound, catheter tips and secretions in general were aseptically collected in different services of Mohamed Boudiaf hospital, Médéa, Algeria. Clinical samples were taken to the microbiology laboratory of the same hospital for analysis.

Detection and enumeration of coagulase-positive Staphylococci in food matrix was done according to ISO 6888-1:1999/A1:2003. Baird Parker agar plates were incubated for 24 to 48 h at 37 °C. Microbiological analysis of clinical samples was done according to Quinn et al (1994). For coagulase-positive Staphylococci (CoPS) confirmation, catalase and coagulase tests were used (Rabbit plasma, Oxoid, UK). Staphylococcus aureus identification for both food and clinical isolates was made by Pastorex staph plus (Bio-Rad, France 2016).

DNA extraction
All isolates were purified by inoculation in Trypticase Soya Broth (TSB), and then transferred to Trypticase Soya Agar (TSA) plates for 18h incubation at 37°C. For bacterial cell lysates, lysozyme (100mg/ml) and proteinase-K (10mg/ml) were used. Nucleic acid extraction was performed with Phenol/chloroform extraction method according to Sambrook and Russel (2001). DNA pellet was re-suspended in Diethyl pyrocarbonate (DEPC) treated water and stored at –20 °C until PCR analyses.

PCR Procedure
Specific primers were used for the amplification of the sea, seb, sec, sed, see (SEs) genes; eta, etb (Exfoliative Toxins A, B associated genes), and tst (Toxic Shock Syndrome Toxin-1 gene) (Table 1). The femA primers were used for confirmation of S. aureus among studied strains. PCR procedures were applied according to Mehrotra et al (2000). For the PCR analysis, positive control DNAs were obtained from Mustafa Kemal University, Faculty of Veterinary Medicine, Microbiology Department. Two sets of multiplex PCR procedures were performed according to Mehrotra et al (2000) with minor modifications. Briefly, for SEs, amplification mix containing 200µM deoxynucleoside triphosphates; 5 µl of 10X reaction buffer (100 mMTris-HCl [pH 8.3], 500 mM KCl); 1.5 mM MgCl2; 20 pmol of each sea, seb, sec, see, and femA primers; 40 pmol of sed primer; 2.5 U of Taq DNA polymerase (Thermo scientific), was added to 3 µl of template DNA. For others toxins genes, PCR reaction had the same constituents as in SEs except for the MgCl2 concentration (2.0 mM) and the primers, which were used at 50 pmol for eta and 20 pmol for etb and tst. The final volume was adjusted to 25 µl by adding sterile ultrapure water. Amplification (CFX 96 thermal cycler, Bio-Rad) programme was as follows:

Table 1. Characteristics of primers used for PCR analysis

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer</th>
<th>Oligonucleotide sequence (5’-3’)</th>
<th>Location within gene</th>
<th>Size of amplified product (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sea</td>
<td>GSEAR-1 GSEAR-2</td>
<td>GGTTATCATAATGTGCGGGTGG CCGCACTTTTTTCTCTTCGG</td>
<td>349–368 431–450</td>
<td>102</td>
</tr>
<tr>
<td>seb</td>
<td>GSEBR-1 GSEBR-2</td>
<td>GTATGGTGTGTTAACGAGC CCAATAGTGGGAGGAGG</td>
<td>666–685 810–829</td>
<td>164</td>
</tr>
<tr>
<td>sec</td>
<td>GSECR-1 GSECR-2</td>
<td>AGATGAAGTGGTGGATGTGTAACGG CACACTTTGGAATCAACGG</td>
<td>432–455 863–882</td>
<td>451</td>
</tr>
<tr>
<td>sed</td>
<td>GSED-1 GSED-2</td>
<td>CCAAATAGGAGAAATAAAAAATG ATTGATTTTTTTTCGTTC</td>
<td>492–514 750–769</td>
<td>278</td>
</tr>
<tr>
<td>see</td>
<td>GSEER-1 GSEER-2</td>
<td>AGGTTTTTTTCACAGGTGACCT TTTTTTTTTTTCGTTACATC</td>
<td>237–257 425–445</td>
<td>209</td>
</tr>
<tr>
<td>femA</td>
<td>GFEMAR-1 GFEMAR-2</td>
<td>AAAAAAGCATAAACAGGACGG GATAAAAGAGAAACCAGCAG</td>
<td>1444–1463 1556–1575</td>
<td>132</td>
</tr>
<tr>
<td>eta</td>
<td>GETAR-1 GETAR-2</td>
<td>GCAGGTTGGTATTTGACTATT AGATGTCCCTATTTTGTG</td>
<td>775–794 848–867</td>
<td>93</td>
</tr>
<tr>
<td>etb</td>
<td>GETBR-1 GETBR-2</td>
<td>ACAAGCAAAAAGAATACAGGCC GTTTTGCGTCTTCCTTC</td>
<td>509–528 715–734</td>
<td>226</td>
</tr>
<tr>
<td>tst</td>
<td>GTSSTR-1 GTSSTR-2</td>
<td>ACCCTGTTCCCTATCATC TTTTCAAGTTTTGAACGCC</td>
<td>88–107 394–113</td>
<td>326</td>
</tr>
</tbody>
</table>

HVM Bioflux

initial denaturation at 94°C for 3 min followed by 29 cycles of amplification (denaturation at 94°C for 1.5 min, annealing at 54°C for 1.5 min, and extension at 72°C for 1 min). A final extension step (72°C for 7 min) was performed after the completion of cycles.

PCR products, were loaded into 2% agarose gel (BioMax) stained with 5 µl of RedSafe™ nucleic acid (iNtROn Biotechnology, Korea) and visualized using a UV transluminator (EC3, UVP Bioimaging systems, Inc).

Statistical analysis
Fisher’s exact test was used to compare the frequency of each enterotoxin, exfoliative toxin and toxic shock syndrome toxin-1 genes. P value of <0.05 was considered as statistically significant.

Results
In the present study, the amplification of SEs, other toxin-associated genes and femA was successfully obtained. Table 2 and Table 3 show the PCR results for the detection of classic enterotoxins encoding genes; exfoliative toxins and toxic shock syndrome toxin-1 encoding genes of all Staphylococci isolates. According to phenotypic methods and femA gene detection, 61 isolates (63.54%) (22 food, 39 clinical) were confirmed as Staphylococcus aureus.

Regarding to food-matrix origins, raw milk and minced beef meat were the most common matrix which contained Staphylococci harbouring sed gene (10 and 6 isolates, respectively) (Table 2). In addition, three see genes were detected in raw milk isolates only. However, the two S. aureus isolates possessing the sea gene were exclusively isolated from creamy cake samples. In all food isolates, S. aureus was more enterotoxigenic than CoNS (68.18% vs 41.37% respectively) but not significantly different (P=0.089), this difference was remarkably observed for sed and sea genes (P=0.145, P=0.181). However, the frequency of sec and see genes in CoNS (6.9%) was higher but not significant compared to S. aureus isolates (4.54%) (P=1.000). The exfoliative encoding genes (eta, etb) and tst gene were not detected in any food isolates.

Regarding clinical isolates, the rate of staphylococcal-harbouring enterotoxin genes isolated from clinical samples was significantly lower (6/13.33%) compared to that of food isolates (27/55.94%) (P<0.001). All clinical CoNS isolates were negative for SEs genes. Among the six SEs genes positive isolates, three hospital acquired isolates possessed the sed gene and one isolate harboured seb gene. Exceptionally, one community acquired S. aureus isolate had the seb gene. The exfoliative encoding genes (eta, etb) were not found in any clinical isolates. Nevertheless, a high percentage of the tst gene (55.55%) was detected, with predominance of pus samples (9 isolates) (Table 3). For all clinical CoNS isolates, the tst gene was found only in one community acquired strain.

Table 4 lists the genotype profiles for all isolates harbouring one or multiple toxin genes. Among all profiles observed, the most commonly identified gene profiles were those containing a single

Table 2. Distribution of the enterotoxins, Exfoliative toxins and Toxic Shock Syndrome Toxin-1 genes for food isolates.

<table>
<thead>
<tr>
<th>Target genes</th>
<th>Amplicon size (bp)</th>
<th>Food isolates (n = 51)</th>
<th>CoNS (n = 29; 56.86%)</th>
<th>P value</th>
<th>Samples origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>femA(132)</td>
<td></td>
<td>22</td>
<td>-</td>
<td>ND</td>
<td>(10) Raw milk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) Creamy cake</td>
<td></td>
<td>(2) Sausages</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8) Minced beef meat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sea(102)</td>
<td>2 (9.09%)</td>
<td>-</td>
<td>0.181</td>
<td>(1) Creamy cake</td>
<td></td>
</tr>
<tr>
<td>seb(164)</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>(2) Minced beef meat</td>
<td></td>
</tr>
<tr>
<td>sec(451)</td>
<td>1(4.55%)</td>
<td>2(6.90%)</td>
<td>1</td>
<td>(3) Raw milk</td>
<td></td>
</tr>
<tr>
<td>sed(278)</td>
<td>11(50%)</td>
<td>8(27.59%)</td>
<td>0.145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>see(208)</td>
<td>1(4.55%)</td>
<td>2(6.90%)</td>
<td>1</td>
<td>(6) Minced beef meat</td>
<td></td>
</tr>
<tr>
<td>eta(93)</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>etb(266)</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tst(326)</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Achek et al 2018
Volume 10 | Issue 2
Page 87

HVM Bioflux
toxin gene (sea, seb, sec, sed, see and tst). Twenty six (27.08%) isolates had one type of enterotoxins gene, and 23 (23.95%) possessed only the tst gene. Besides, the sed and tst genotypes were the most observed with 18 (%) and 23 (%) strains, respectively. Combinations genes had been found in four genotypes (sed-sea, sed-sec, sed-tst, sed-seb-tst); each multi-toxin genotype had only one strain.

The present results showed that sea, seb, sed-sea, sed-sec, sed-seb-tst and sed-tst genotypes had occurred in S. aureus isolates. The remaining genotypes included both S. aureus and CoNS isolates.

Discussion

In Algeria, few studies have focused on the toxigenic potential of staphylococcal strains and their occurrence in food poisoning.
or hospital/community acquired infections. Algerian reports had studied PVL and TSST-1 genes carriage in MRSA (Ramdani-Bouguesse et al 2006; Bittar et al 2009; Ouchenane et al 2010). Antiri et al (2010) studied the Staphylococcus aureus enterotoxin genes carriage isolated in hospital and recorded a low frequency for classical enterotoxin genes (8.6%). For the knowledge of the authors, no data has been published about the frequency of toxins genes carriage in Staphylococci isolated form food matrix. Our results showed that the staphylococcal isolates harbouring genes for classical enterotoxins were responsible for more than half of all cases of food contamination. These results are in accordance with many previous works (Chapaval et al 2006; Pereira et al 2009; Carfora et al 2015). In the present study, sed was the most frequent toxin-encoding gene (19 of 51 isolates, 37.25%) isolated from food. This gene was mainly detected in Staphylococci isolated from raw milk and minced beef meat. These results are in agreement with other studies, such as those of Pu et al (2011) and Bianchi et al (2013) who reported that 15% (23/152) and 25% (120/481) of retail meat isolates and dairy product isolates had amplified the sed gene. In contrast, Zouharova and Rysanek (2008) reported that a low percentage of S. aureus isolates encoding the sed gene (2/70; 2.9%) in raw milk, whereas Balaban and Rosoony (2000) and Normanno et al (2005) found no evidence that the SED enterotoxin was involved in Staphylococcal food poisoning (SFP).

In our study, no isolates taken from raw milk encoded the sea gene. The only detected sea gene came from isolates which originated from cream cake samples. In contrast, Chapaval et al (2006) and Rall et al (2008) reported that sea was the most common toxin gene detected in raw milk isolates, finding 67.78% (61 out 90 isolates) and 28.9% (11 out 38 isolates), respectively. Omoe et al (2005), Chiang et al (2008) and Tang et al (2011) detected the sea gene mainly in Staphylococci isolated from food matrix. They reported that it was responsible for 5.8%, 29.2% and 50% of cases of SFP, respectively. However, Pereira et al (2009) did not detect the sea gene in 20 S. aureus isolated from raw milk, which is in accordance with our results. In terms of the frequency of seb gene detection, our results are in accordance with those of Cremonesi et al (2005) and Bianchi et al (2013), who reported that all of Staphylococcal strains isolated from milk and dairy products were negative for the seb gene. In our study, see gene was harboured only by three Staphylococci strains isolated from raw milk; Rall et al (2008) detected the see gene in 5.26% (2 out of 38 isolates) S. aureus isolated from raw milk, while Zouharova and Rysanek (2008) did not. For sec gene carriage, we reported two strains isolated from minced beef meat, while Pu et al (2011) did not detect any sec gene in 152 S. aureus isolates.

Regarding clinical isolates, the rate of staphylococcal-harbouring enterotoxin genes observed in our study was lower than that reported in earlier clinical investigations (Bekker et al 2003; Nashev et al 2007; Chiang et al 2008). Our clinical samples consisted mainly of samples obtained from patients with hospital- and community-acquired infections. Thus, the discordance may be explained by differences in the origin of the specimens, which included samples from food poisoning cases, or potential contamination by carriage sources of Staphylococci (nasal cavities and hands). However, some authors (Naffa et al 2006; da Cunha et al 2007 and Demir et al 2011) reported a high percentage of staphylococcal-positive SE-encoding genes obtained from samples population similar to ours: 23/100 (23%), 56/120 (47.5%) and 66/120 (55%), respectively. Moreover, considering that our results are in concordance with a local report of Antiri et al (2010), we can consider that geographical location might explain the large difference between our findings and those reported earlier.

Irrespective of the clinical sampling origin, several studies reported a high frequency of the sea gene in Staphylococci isolates (Naffa et al 2006; Nashev et al 2007; Demir et al 2011). However, it should be pointed out that in the present study, sea gene was not detected in any of the clinical isolates. The frequency of see gene found in our study was in accordance with that of all the above studies, except the study by Becker et al (2003). The occurrence enterotoxin-encoding genes detected in CoNS isolated from food samples was 41.37% (12 out of 29 CoNS isolates), which was higher than reported in other studies (Blaiotta et al 2004; da Cunha et al 2006) but similar to another (Fijalkowski et al 2016). In our study, the most frequently detected enterotoxin gene was sed, and neither sea nor seb were detected in the CoNS isolates. Da Cuhna et al (2006) reported that 15% (3 out 20 isolates) of CoNS isolated from foods harboured the sea gene. Other studies also detected enterotoxin genes in CoNS strains from both dairy and meat products (Vernozy-Rozand et al 1996; Rodriguez et al 1996).

In the present study we did not detect eta or etb genes in any of the tested samples. Some studies reported that S. aureus produced one or both exfoliative toxins (Hayakawa et al 2000; Becker et al 2003; Demir et al 2011). Jarraud et al (2001) did not detect eta and etb genes in 58 S. aureus isolates responsible for suppurative diseases. In our study, tst gene was not detected in the food origin isolates, this result corroborate the Fijalkowski et al (2016) works. In contrast, we observed a high frequency of the tst gene (25/45; 55.55%) in clinical isolates, this result being similar to that found by Chiang et al (2008), who reported a frequency of 59.1% (87 out of 147 isolates). This was higher than that detected in earlier studies of Becker et al 2003; da Cunha et al 2007 and Demir et al 2011, who reported frequencies of (87/429; 20.3%), (11/104; 11.08%) and (17/120; 14.17%), respectively. The TSST-1 toxin is a causative agent of systemic infections, such as the staphylococcal toxic shock syndrome (Dinges et al 2000) but is rarely implicated in SFP. A number of studies reported that TSST-1 was frequently detected in S. aureus clinical isolates but rarely in food isolates (Lappin and Ferguson 2009; Tsen et al 1998; El-Ghodban et al 2006).

In the present study, most genotypes contained a single toxin gene, regardless of the origin of the sample, with tst and sed as the most common genes. This result is in accordance with those of several other studies (Nashev et al 2007; Zouharova and Rysanek 2008; Rall et al 2010), although the sea genotype was predominant in these studies. However, in other studies (Bianchi et al 2013; Pu et al 2011) the sed genotype was the most common genotype detected. In the present study, in clinical samples, the frequency of the tst genotype was in agreement with that found in an earlier study (Chiang et al 2008).

In the current study, frequency of toxin gene combinations was low, being observed in only four isolates. The tst gene was detected in combination with enterotoxin genes in two genotypes.
A number of previous studies reported that Staphylococci strains harboured the \textit{tst} gene, either alone or in combination with SE-encoding genes (Becker et al. 2003; Chapaval et al. 2006; da Cunha et al. 2007; Chiang et al. 2008; Demir et al. 2011). Others studies recorded a \textit{tst} combination with \textit{sec}, but not with \textit{sed or seb} (Hwang et al. 2007). The toxins production by Staphylococci strains is complex and involves gene carriage and gene promoters, such as multiple global regulators of virulence (\textit{e.g. agr, sarA, rot and sigB}). Previous studies suggested that toxin-encoding genes (SEs, TSST-1 and exfoliative toxins) could be located on a mobile genetic carrier, which would provide potential support for horizontal transfer or genotype combination (Omoe et al. 2005; Chiang et al. 2008, Grumann et al. 2014). Jarraud et al. (2001) suggested that SEs and TSST-1 share common structural and biological properties and those that are derived from a common ancestor.

To conclude, this study reports the occurrence of the toxin genes in staphylococcal isolates from food and clinical samples in Algeria. Using a multiplex PCR method, a high frequency of SEs genes in food isolates and \textit{tst} gene in clinical isolates were recorded. The pathogenic potential of CoNS points to the need for a greater surveillance in the area of hygiene and public health. There is an urgent need to establish legal standardized methods to be able to verify and quantify the degree of Staphylococci enterotoxins contamination in foods in Algeria. Further research is needed in order to investigate the contamination routes of food consumed in Algeria and the distribution of newly described Staphylococcal toxin genes.

Acknowledgments

Authors expressed their grateful acknowledgement to Dr. Yasar Ergün and other staff members of Veterinary Faculty, Mustafa Kemal University, Hatay, Turkey for their help and supportive assistance during the preparation of this work.

References

Authors

• Rachid Achek, High National Veterinary School, Issad Abbes Avenue, Oued Smar, Algiers, Algeria, email: achekrachid@gmail.com

• Zafer Cantekin, Department of Microbiology, Faculty of Veterinary Medicine, Mustafa Kemal University, Tayfur Sokmen Campus 31000 Hatay, Turkey, email: zcantekin@hotmail.com.
Citation

Editor
Stefan C. Vesa

Received
24 February 2018

Accepted
4 May 2018

Published Online
29 June 2018

Funding
None reported

Conflicts/Competing Interests
None reported

• Mustapha Oumouna, Faculty of sciences, YahiaFarès University, Urban pole, Médéa, Algeria, email: oumouna@Gmail.com.
• Amira Mahdi, Faculty of sciences, YahiaFarès University, Urban pole, Médéa, Algeria, email: amiramahdi5@gmail.com
• Taha-Mossadak Hamdi, High National Veterinary School, Issad Abbes Avenue, Oued Smar, Algiers, Algeria, email: moussa-hamdi@hotmail.com