A simple spectrophotometric assay for stability determination of chlorpromazine in veterinary injectable solutions

Nabaa K. A. Al-Hayani, Fouad K. Mohammad

Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Mosul, Mosul, Iraq.

Abstract. Objective: To present a simple spectrophotometric method for measuring chlorpromazine (CPZ) concentration in veterinary injectable solutions subjected to accelerated stability testing. Material and methods: Four different injectable solutions of CPZ in their original glass ampoules were subjected to accelerated stability testing by incubating them at 40°C for 30 days without any exposure to light. The concentration of CPZ was determined from tested ampoules at 0 time (before incubation) and at 30 days after the incubation. The stability of CPZ in the injectable solutions at supposedly storage temperatures of 15°C and 20°C was calculated by the Q_{10} method. Results: The calibration curve of CPZ was linear with good correlation coefficient (r=0.9986). The DL and QL of CPZ by the applied method were 4.2 and 12.8 µg/ml, respectively. CPZ concentrations following incubation of the four formulations at 40°C for 30 days decreased to 38, 70, 87 and 86% of their original contents, respectively. The calculated stability periods of CPZ in the injectable solutions at 15°C were 320, 368, 720 and 608 days, respectively, and at 20°C they were 160, 184, 360 and 304 days, respectively. The most stable formulations of CPZ were 3 and 4, followed by formulation 2, and the least stable one was no. 1 which showed color change to brownish-red. Conclusion: The method was simple, rapid and accurate for measuring CPZ concentration, as well as for determination of its stability in injectable formulations intended for animal use.

Key Words: phenothiazine tranquilizer, colorimetric method, expiry test, Q_{10} method.

Corresponding Author: F. K. Mohammad, fouadmohammad@yahoo.com

Material and methods
The chemical compounds used for formulating of four CPZ injectable solutions intended for veterinary use are shown in table 1. The chemicals were kindly donated by the State Company for Drug and Medical Appliances-Ninevah (Mosul, Iraq). The four injectable formulations of CPZ in their original glass ampoules were subjected to accelerated stability testing by incubating them at 40°C for 30 days without any exposure to light. Then, the concentration of CPZ was determined from the tested ampoules at 0 time (before incubation) and at 30 days after the incubation. The stability of CPZ in the injectable solutions at supposedly storage temperatures of 15°C and 20°C was calculated by the Q_{10} method as described before (Allen, Jr et al 2005) using the following equation:
\[t_{90}(T_2) = \frac{t_{90}(T_1)}{Q_{10}^{(\Delta T/10)}} \]

Where \(t_{90}(T_2) \) is the shelf-life to be estimated at 15°C or 20°C, \(t_{90}(T_1) \) is the shelf-life at 40°C, and \(\Delta T \) is the difference between temperatures \(T_1 \) (40°C) and \(T_2 \) (15°C or 20°C).

The details of the reagents used and the spectrophotometric procedure applied were as follows:

Reagents: 0.1 N sulfuric acid, 1 N sulfuric acid, 50% sulfuric acid, 2% ferric nitrate in 1 N sulfuric acid.

CPZ standard: The working standard curve of CPZ consisted of the drug concentrations at 5, 10, 20, 40 and 80 µg/4 ml of 0.1 N sulfuric acid.

Steps of CPZ assay: An aliquot of 0.1 ml of CPZ (1 or 2.5%) solutions was diluted with 0.1 N sulfuric acid to 200 ml. Four ml of the diluted CPZ (or CPZ standard) solutions were mixed well with two ml of 50% sulfuric acid. Then, an aliquot of 0.2 ml of 2% ferric nitrate solution was added to the mixture for color development. The absorbance of the developed color was measured by a spectrophotometer (Jenway 6405, Wagteah International, U.K.) at 530 nm against a water blank. All assays were done in duplicate at ambient room temperature. The detection limit (DL) and quantitation limit (QL) of the method were measured according to the ICH guidelines using the following formulae (ICH 2005):

\[DL = 3.3SD/Slope \]
\[QL = 10SD/Slope \]

Where SD is the standard deviation of the response obtained from analyzing ten blank samples and the slope of CPZ calibration curve was estimated by the regression analysis (Petrie & Watson 2006).

Results

Figure 1 shows a typical standard curve for the determination of CPZ in the range of 5 to 80 µg/4 ml. The calibration curve of CPZ was linear under optimal assay conditions with good correlation coefficient (\(r = 0.9986 \)). The DL and QL of CPZ by the applied method were 4.2 and 12.8 µg/4 ml, respectively. Concentrations of CPZ following incubation of the four formulations at 40°C for 30 days (accelerated test) decreased by 62, 30, 13 and 14% compared to their original contents, respectively (Figure 2). Using these values, we calculated the stability of CPZ in the injectable solutions at storage temperatures of 15°C and 20°C as shown in table 2. The most stable formulation of CPZ were 3 and 4, followed by formulation 2 and the least stable one was no. 1 which showed color change to brownish-red.

Table 1. Chemical compounds in chlorpromazine HCl injectable solutions

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Chlorpromazine HCl concentration (%)</th>
<th>Other ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Ascorbic acid, water for injection</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>Benzyl alcohol, water for injection</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>Ascorbic acid, sodium metabisulfite, sodium sulfate, sodium chloride, water for injection</td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
<td>Ascorbic acid, sodium metabisulfite, sodium chloride, benzyl alcohol, water for injection</td>
</tr>
</tbody>
</table>

Table 2. The stability (days) of veterinary chlorpromazine formulations

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Storage at 15°C</th>
<th>Storage at 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>320</td>
<td>160</td>
</tr>
<tr>
<td>2</td>
<td>368</td>
<td>184</td>
</tr>
<tr>
<td>3</td>
<td>720</td>
<td>360</td>
</tr>
<tr>
<td>4</td>
<td>608</td>
<td>304</td>
</tr>
</tbody>
</table>

The Q_10 method (Allen, Jr et al 2005) was used to determine the stability of the drug after accelerated test (incubation at 40°C for 30 days).

Figure 1. Standard calibration curve of chlorpromazine measured spectrophotometrically at 530 nm. \(Y = 0.00416X + 0.02545 \); \(r = 0.9986 \).

Figure 2. Percentage concentrations of chlorpromazine following incubation of the four formulations at 40°C for 30 days (accelerated test) compared to their original contents at 0 time.
Discussion
The method of CPZ determination was rapid, accurate and appeared to be robust for measuring CPZ concentration, as well as for the determination of CPZ stability in injectable formulations intended for animals. It was cost effective when compared with other elaborate methods (Forrest et al. 1968; Onkubo et al. 1993; Shetti & Venkatachalam 2010; IPCS 2013). Both DL and QL were within the acceptable limits according to ICH guidelines (ICH 2005), as the samples of CPZ obtained from the formulations had the drug at concentrations well above the DL and QL and within the linear range of CPZ calibration curve.

The simplicity of the method is that it does not need extraction of CPZ as reported originally when dealing with biological samples (Leach & Crimmin 1956). It appeared that ingredients incorporated into the formulations of CPZ injection (Table 1) did not interfere with the assay. The color change found in formulation 1 after 30-day incubation at 40˚C could be attributed to oxidation of CPZ (IPCS 2013). This was coupled with decreased active ingredient (CPZ) concentration by 62% at the end of the accelerated stability test (Figure 2). In the latter formulation ascorbic acid was the sole antioxidant used, and probably it was not effective in protecting CPZ from the oxidation reaction. Others also have reported the failure of ascorbic acid as an effective antioxidant in zopiclone injection formulation (Swamy et al. 2008).

Conclusions
In conclusion, the present colorimetric method was simple, rapid and accurate for measuring CPZ concentration, as well as for determination of its stability in injectable formulations intended for animal use. Further experiments are needed to evaluate the suitability of the method for determining CPZ in other pharmaceutical formulations such as tablets and oral dosage liquids.

Acknowledgment
This report represents a portion of a thesis to be submitted by the first author to the University of Mosul, Iraq as partial fulfillment of the requirements of an MSc degree in Veterinary Pharmacology and Toxicology.

References

Authors
• Nabaa K.A. Al-Hayani, Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Mosul, Mosul, Iraq, e-mail: nabas8480@yahoo.com
• Fouad K. Mohammad, Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Mosul, Mosul, Iraq, e-mail: fouadmohammad@yahoo.com
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Editor</td>
<td>Ştefan C. Vesa</td>
</tr>
<tr>
<td>Received</td>
<td>9 July 2013</td>
</tr>
<tr>
<td>Accepted</td>
<td>7 August 2013</td>
</tr>
<tr>
<td>Published Online</td>
<td>8 August 2013</td>
</tr>
<tr>
<td>Funding</td>
<td>None reported</td>
</tr>
<tr>
<td>Conflicts/Competing Interests</td>
<td>None reported</td>
</tr>
</tbody>
</table>